A Review On Bioremediation Of Petroleum Hydrocarbon

c01ce31954a69c60b9abc77f1617d947

Bioremediation of Ground Water and Geological Material

In-situ Bioremediation

A CRITICAL REVIEW OF IN SITU BIOREMEDIATION; TOPICAL REPORT. Review of Potential for Bioremediation of Petroleum Contaminated Soils with Special Reference to Landspreading

Ex Situ Surfactant-Enhanced Bioremediation of NAPL-Impacted Vadose Zone

In Situ Bioremediation

Bioremediation of Inorganics

Bioremediation for Environmental Sustainability

Bioremediation for Environmental Sustainability

Environmental Biotechnology Vol. 3

Literature Review and Assessment of Various Approaches to Bioremediation of Oil and Associated Hydrocarbons in Soil and Groundwater, Vol. 1

Bioremediation of Petroleum Contaminated Aquifers

Review of Bioremediation for Polynuclear Aromatic Hydrocarbon-contaminated Sites

Literature review on the use of bioremediation agents for cleanup of oilcontaminated estuarine environments

Approaches in Bioremediation

Bioremediation of Soils Contaminated with Manufactured Gas Plant

Residues - a Literature Review

Bioremediation of Petroleum Hydrocarbons in Soil and Groundwater Under Cold Climate Conditions

Sulfate-Reducing Bacteria

Review of bioremediation for polynuclear aromatic hydrocarbon-contaminated sites

Bioremediation and Green Technologies

In-situ Bioremediation of Ground Water and Geological Material

Bioremediation of Hydrazine: A Literature Review

Environmental Microbial Biotechnology

Preliminary Review of Bioremediation Experience of Hazardous Wastes

Microorganisms and Bioremediation

Methods for Bioremediation of Water and Wastewater Pollution

Review of Six Technologies for in Situ Bioremediation of Dissolved BTEx in Groundwater

Bioremediation of Dinitrotoluene (DNT)

A Critical Review of Bioremediation Techniques Applied to Heavy Metal and Radioactively Contaminated Media

An SAB Report

In-situ Bioremediation of Chlorinated Solvents - A Review

Review of Mass Spectrometry and Bioremediation Programs of the Edgewood Research, Development and Engineering Center

In-Situ Bioremediation of Ground Water and Geological Material

Bioremediation of Soil Contaminated with Polynuclear Aromatic Hydrocarbons (PAHs)

Bioremediation of Oil Spills

Bioremediation of Olive Mill Wastewater by Yeasts - A Review of the Criteria for the Selection of Promising Strains

Advances in Biodegradation and Bioremediation of Industrial Waste

Bioremediation of Ground Water and Geological Material

A review work of all work and research done in the field of bioremediation of heavy metals and radioactive wastes from environment.

In-situ Bioremediation

A CRITICAL REVIEW OF IN SITU BIOREMEDIATION; TOPICAL REPORT.

Review of Potential for Bioremediation of Petroleum Contaminated Soils with Special Reference to Landspreading

Ex Situ Surfactant-Enhanced Bioremediation of NAPL-Impacted Vadose Zone

This work presents a review of surfactant-enhanced bioremediation of hydrophobic organic contaminants in the soil with a focus on ex situ method. Conventional strategies of disposal methods in secure landfill and incineration have become cost prohibitive and environmentally risky and do not restore the contaminated soil, whereas chemical and physical methods have shown very limited success and can also be expensive. Traditional bioremediation pertaining to remedial technology of hydrophobic organic contaminants in soil has empirically demonstrated limited success due to their low aqueous solubility. Addition of single synthetic surfactant or biosurfactant, or in combination, has the potential to increase their mass transfer phase, hence their bioavailability. Surfactant-enhanced biodegradation represents a promising cost-effective alternative to complete mineralization of hydrophobic organic contaminants in soil. In this work, the potential of surfactants on the remediation of contaminated soil in an ex situ approach is reviewed with considerations given to the practical aspects of field components. Surfactant-enhanced biodegradation represents a promising cost-effective alternative to complete mineralization of hydrophobic organic contaminants in soil. In this work, the potential of surfactants on the remediation of contaminated soil in an ex situ approach is reviewed with considerations given to the
In Situ Bioremediation

Bioremediation of Inorganics

Bioremediation for Environmental Sustainability

Environmental Biotechnology Vol. 3

This review focuses on the in-situ bioremediation of chlorinated organic solvents. This group of compounds is one of the most widespread contaminant classes and one of the most troublesome to remediate. They are found nationwide in municipal and industrial waste waters, landfills and landfill leachates, industrial sludges, waste disposal sited, and groundwaters. Chlorinated alkanes and alkenes, such as trichloroethane (TCA) and trichloroethylene (TCE), are used as dry cleaning fluids, refrigerants, degreasing agents, solvents, and in the production of decaffeinated coffee. The review will include a discussion of laboratory-scale research, some field application considerations, and a review of a full-scale remediation study.

Literature Review and Assessment of Various Approaches to Bioremediation of Oil and Associated Hydrocarbons in Soil and Groundwater, Vol. I

Bioremediation of Petroleum Contaminated Aquifers

Addresses a Global Challenge to Sustainable Development Advances in Biodegradation and Bioremediation of Industrial Waste examines and compiles the latest information on the industrial waste biodegradation process and provides a comprehensive review. Dedicated to reducing pollutants generated by agriculturally contaminated soil, and plastic waste from various industries, this text is a book that begs the question: Is a pollution-free environment possible? The book combines with current available data with the expert knowledge of specialists from around the world to evaluate various aspects of environmental microbiology and biotechnology. It emphasizes the role of different bioreactors for the treatment of complex industrial waste and provides specific chapters on bioreactors and membrane process integrated with biodegradation process. It also places special emphasis on phytoremediation and the role of wetland plant rhizosphere bacterial ecology and the bioremediation of complex industrial wastewater. The authors address the microbial, biochemical, and molecular aspects of biodegradation and bioremediation which cover numerous topics, including microbial genomics and proteomics for the bioremediation of industrial waste. This text contains 14 chapters and covers: Bioprocess engineering and mathematical modelling with a focus on environmental engineering The roles of siderophores and the rhizosphere bacterial community for phytoremediation of heavy metals Current advances in phytoremediation, especially as it relates to the mechanism of phytoremediation of soil polluted with heavy metals Microbial degradation of aromatic compounds and pesticides: Challenges and solution Bioremediation of hydrocarbon contaminated wastewater of refinery plants The role of biosurfactants for bioremediation and biodegradation of various pollutants discharged from industrial waste as they are tools of biotechnology The role of potential microbial enzymatic processes for bioremediation of industrial waste The latest knowledge regarding the biodegradation of tannery and textile waste A resource for students interested in the field of environment, microbiology, industrial engineering, biotechnology, botany, and agricultural sciences, Advances in Biodegradation and Bioremediation of Industrial Waste provides recent knowledge and approaches on the bioremediation of complex industrial waste.

Review of Bioremediation for Polynuclear Aromatic Hydrocarbon-contaminated Sites

The objective of this project is to provide a critical review of the state of the art of in situ bioremediation. The report reviews the status of the technology, as applicable to in situ bioreclamation, in the fields that are paramount to it, including microbiology, hydrodynamics and engineering, as well as its legal and other nontechnical aspects. An understanding of the promise and limitations of this technology as it is currently practiced, as well as the research needs
for its furtherance, are key to the energy industry.

Literature review on the use of bioremediation agents for cleanup of oilcontaminated estuarine environments

Approaches in Bioremediation

In this well-illustrated reference, contributors summarize current research on sulfate-reducing bacteria and examine their relationship to biotechnology processes. This approach enables researchers to identify and define appropriate questions for future research. Chapters examine the biochemical and physiological characteristics of sulfate-reducing eubacteria and archaebacteria and review environmental and industrial activities of these bacteria. This volume features the first review on bioremediation by sulfate-reducing bacteria.

Bioremediation of Soils Contaminated with Manufactured Gas Plant Residues - a Literature Review

Bioremediation of Petroleum Hydrocarbons in Soil and Groundwater Under Cold Climate Conditions

Sulfate-Reducing Bacteria

Contamination of the environment is of enormous economic and environmental significance. This book reviews the latest research on the harnessing of biotechnology to decontaminate the environment. Internationally acclaimed authors from diverse fields present comprehensive reviews of the most important and well-established solutions to environmental contamination. The limitations as well as the future potential of these practices are critically highlighted. The book also includes stimulating reviews of selected practices which are either novel or the subject of some debate in bioremediation research and practice. This is essential reading for bioremediation researchers and practitioners who wish to look beyond current practice and explore new avenues that may ultimately change the way in which bioremediation is conducted, monitored and studied.

Review of bioremediation for polynuclear aromatic hydrocarbon-contaminated sites

Bioremediation and Green Technologies

In-situ Bioremediation of Ground Water and Geological Material

Bioremediation of Hydrazine: A Literature Review

This volume is a collection of informative chapters on various subjects. It provides information on the effects of pesticides on avian fauna, the impact of microbial ecosystems to solve environmental problems, a detailed review on issues in membrane distillations process, microbial sensor for detection of pollutants, microbial biosurfactants, biotechnological applications of immobilised microalgae as well as a review on Biochar production. Most importantly, this book contains a critical review on microbial degradation of plastic wastes and highlights the Biodegradation and Bioremediation of Herbicides.

Environmental Microbial Biotechnology

One of a set presenting selected papers from the Third International In Situ and On-Site Bioreclamation Symposium, San Diego, April 1995. The 17 papers on inorganics include discussions of metal removal and sulfate reduction in low-sulfate mine drainage, removing toxic elements with aquatic plants and algae, the volatilization of arsenic compounds by microorganisms, and considerations in deciding to treat contaminated soils in situ. The entire 11-volume, 375-paper set (1-57477-001-2), including an index volume, is available for $449.50. Annotation copyright by Book News, Inc., Portland, OR
Preliminary Review of Bioremediation Experience of Hazardous Wastes

Microorganisms and Bioremediation

Methods for Bioremediation of Water and Wastewater Pollution

This critical review of the status of in situ bioremediation, which is used to clean up contaminated groundwater aquifers and surface soils, has been organized according to possibilities and restrictions. Possibilities are based on present knowledge and indicate that in situ bioremediation can achieve decontamination of aquifers and soils. Restrictions encompass the scientific, engineering, legal, and other questions that stand in the way of successful development and application of in situ bioremediation. Although much has been written about bioremediation, this critical review is unique because it is comprehensive, critical, and integrated. This situation was no accident; the organization of the authorship team and the report's contents were designed to achieve each of the three attributes. Combining a good plan, outstanding individuals contributing, and an incredible amount of work, they created a critical review that defines the technical and non-technical issues that will determine how much of an impact in situ bioremediation makes on solving the world's challenges for cleanup of our legacy of improperly disposed of materials. Readers of this review will find the issues identified and connected. They will have a solid foundation for research, application, or evaluation of in situ bioremediation in the future.

Review of Six Technologies for in Situ Bioremediation of Dissolved BTEX in Groundwater

Bioremediation of Marine Oil Spills

Bioremedial technologies, whether applied exclusively or in conjunction with other physical or chemical approaches for the clean-up of organic contamination, constitute powerful tools in the control, management, and diminution of petroleum products in soil and groundwater. This report evaluates the rapidly expanding list of bioremedial techniques developed over the past years and provides a comparison between the feasibility and relative effectiveness of these techniques and conventional physical and/or chemical treatment technologies.

Bioremediation

Numerous industries utilize hydrazine on a daily basis. The highly toxic hydrazine fuels are utilized by the US Air Force as a rocket propellant and as an emergency power source on the F-16. Civilian industry requires hydrazine in the manufacture of agricultural chemicals and pharmaceuticals, in photography, and as a corrosion inhibitor (oxygen scavenger) in boiler rooms. This literature review was performed as our first step in addressing an USAF Environmental Safety and Occupational Health (ESOH) concerning hydrazine remediation. Large volumes of the fuels are shipped across the highways of the United States annually, increasing the probability of an accidental spill. Such inadvertent releases of hydrazines to the environment are extremely hazardous due to their mutagenic natures. Laboratory bench-scale research has been proposed to develop a more effective and predictable treatment technique. The treatment process needs to be developed to replace existing disposal options, and address the environmental contamination caused by hydrazine spills. Research conducted over the last 20 years has had little success in providing a hydrazine tolerant microbe. Although the use of biological mechanisms has been successfully applied to numerous chemical contaminants, the concentrations of hydrazine at a spill would prove toxic to conventional microbes.

Literature Review and Assessment of Various Approaches to Bioremediation of Oil and Associated Hydrocarbons in Soil and Groundwater

Technology Status Review: Bioremediation of Dinitrotoluene (DNT).

Provides a detailed background of the technologies available for the bioremediation of contaminated soil & ground water. Prepared for scientists, consultants, regulatory personnel, & others who are associated in some way with the restoration of soil & ground water at hazardous waste sites. Also provides insights to emerging technologies which are at the research level of formation, ranging from theoretical concepts, through bench scale inquiries, to limited field-scale investigations. 95 tables & figures.
A Critical Review of Bioremediation Techniques Applied to Heavy Metal and Radioactively Contaminated Media

Bioremediation for Environmental Sustainability: Approaches to Tackle Pollution for Cleaner and Greener Society discusses many recently developed and successfully applied bio/phytoremediation technologies for pollution control and minimization, which are lacking more comprehensive coverage in previous books. This book describes the scope and applications of bio/phytoremediation technologies and especially focuses on the associated eco-environmental concerns, field studies, sustainability issues, and future prospects. The book also examines the feasibility of environmentally friendly and sustainable bio/phytoremediation technologies to remediate contaminated sites, as well as future directions in the field of bioremediation for environmental sustainability. Illustrates the importance of microbes and plants in bio/phytoremediation and wastewater treatment Includes chapters on original research outcomes pertaining to pollution, pollution abatement, and associated bioremediation technologies Covers emerging bioremediation technologies, including electro-bioremediation, microbial fuel cell, nano-bioremediation, constructed wetlands, and more Highlights key developments and challenges in bioremediation and phytoremediation technologies Describes the roles of relatively new approaches in bio/phytoremediation, including molecular engineering and omics technologies, microbial enzymes, biosurfactants, plant-microbe interactions, genetically engineered organisms, and more

In-situ Bioremediation of Chlorinated Solvents - A Review

Bioremediation for Environmental Sustainability: Toxicity, Mechanisms of Contaminants Degradation, Detoxification and Challenges introduces pollution and toxicity profiles of various organic and inorganic contaminants, including mechanisms of toxicity, degradation, and detoxification by microbes and plants, and their bioremediation approaches for environmental sustainability. The book also covers many advanced technologies in the field of bioremediation and phytoremediation, including electro-bioremediation, microbial fuel cells, nano-bioremediation, constructed wetlands, phytotechnologies, and many more, which are lacking in other competitive titles existing in the market. The book includes updated information, as well as future directions for research, in the field of bioremediation of industrial wastes. This book is a reference for students, researchers, scientists, and professionals in the fields of microbiology, biotechnology, environmental sciences, eco-toxicology, environmental remediation, and waste management, especially those who aspire to work on the biodegradation and bioremediation of industrial wastes and environmental pollutants for environmental sustainability. Environmental safety and sustainability with rapid industrialization is one of the major challenges worldwide. Industries are the key drivers in the world economy, but these are also the major polluters due to discharge of potentially toxic and hazardous wastes containing various organic and inorganic pollutants, which cause environmental pollution and severe toxic effects in living beings. Introduces pollution and toxicity profiles of environmental contaminants and industrial wastes, including oil refinery wastewater, distillery wastewater, tannery wastewater, textile wastewater, mine tailing wastes, plastic wastes, and more Describes underlying mechanisms of degradation and detoxification of emerging organic and inorganic contaminants with enzymatic roles Focuses on recent advances and challenges in bioremediation and phytoremediation, including microbial enzymes, biosurfactants, microalgae, biofilm, archaea, genetically engineered organisms, and more Describes how microbes and plants can be successfully applied for the remediation of potentially toxic industrial wastes and chemical pollutants to protect the environment and public health

Review of Mass Spectrometry and Bioremediation Programs of the Edgewood Research, Development and Engineering Center

Bioremediation refers to the clean-up of pollution in soil, groundwater, surface water, and air using typically microbiological processes. It uses naturally occurring bacteria and fungi or plants to degrade, transform or detoxify hazardous substances to human health or the environment. For bioremediation to be effective, microorganisms must enzymatically attack the pollutants and convert them to harmless products. As bioremediation can be effective only where environmental conditions permit microbial growth and action, its application often involves the management of ecological factors to allow microbial growth and degradation to continue at a faster rate. Like other technologies, bioremediation has its limitations. Some contaminants, such as chlorinated organic or high aromatic hydrocarbons, are resistant to microbial attack. They are degraded either gradually or not at all, hence, it is not easy to envisage the rates of clean-up for bioremediation implementation. Bioremediation represents a field of great expansion due to the important development of new technologies. Among them, several decades on metagenomics expansion has led to the detection of autochthonous microbiota that plays a key role during transformation. Transcriptomic guides us to know the expression of key genes and proteomics allow the characterization of proteins that conduct specific reactions. In this book we show specific technologies applied in bioremediation of main interest for research in the field, with special attention on fungi, which
have been poorly studied microorganisms. Finally, new approaches in the field, such as CRISPR-CAS9, are also discussed. Lastly, it introduces management strategies, such as bioremediation application for managing affected environment and bioremediation approaches. Examples of successful bioremediation applications are illustrated in radionuclide entrapment and retardation, soil stabilization and remediation of polycyclic aromatic hydrocarbons, phenols, plastics or fluorinated compounds. Other emerging bioremediation methods include electro bioremediation, microbe-availed phytoremediation, genetic recombinant technologies in enhancing plants in accumulation of inorganic metals, and metalloids as well as degradation of organic pollutants, protein-metabolic engineering to increase bioremediation efficiency, including nanotechnology applications are also discussed.

In-Situ Bioremediation of Ground Water and Geological Material

Bioremediation of Soil Contaminated with Polynuclear Aromatic Hydrocarbons (PAHs)

Bioremediation of Oil Spills

This book provides a timely review of strategies for coping with polluted ecosystems by employing bacteria, fungi and algae. It presents the vast variety of microbial technologies currently applied in the bioremediation of a variety of anthropogenic toxic chemicals, mining and industrial wastes and other pollutants. Topics covered include: microbe-mineral interactions, biosensors in environmental monitoring, iron-mineral transformation, microbial biosurfactants, biocconversion of cotton gin waste to bioethanol, anaerobe biolcaling and sulfide oxidation. Further chapters discuss the effects of pollution on microbial diversity, as well as the role of microbes in the bioremediation of abandoned mining areas, industrial and horticultural wastes, wastewater and sites polluted with hydrocarbons, heavy metals, manganese and uranium.

Bioremediation of Olive Mill Wastewater by Yeasts - A Review of the Criteria for the Selection of Promising Strains

Recent advances in the understanding of how bacteria biodegrade dinitrotoluenes (DNT) under aerobic conditions has led to the development of remediation systems that can dramatically reduce clean up costs of DNT-contaminated soil and ground water. This document summarizes the latest information on bioremediation technologies that exploit the ability of aerobic bacteria to mineralize 2,4- and 2,6-dinitrotoluene (2,4-DNT, 2,6-DNT) to yield energy, harmless minerals and biomass (1). It is based on a recent review of the relevant literature (8). Sources for further information are provided below.

Advances in Biodegradation and Bioremediation of Industrial Waste

Copyright code: c01ce31954a69c60b9abc77f16176947